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Abstract
We present a theory of the Nb-ion off-centre displacements and ferroelectric
phase transition in dilute KTa1−xNbxO3. We believe that this theory is generally
applicable to ferroelectric transitions in incipient ferroelectrics induced by
impurities. We show that the non-uniform strong intraband electron–phonon
interaction leads to the localization of virtual conduction band electrons around
the Nb ions and to the off-centre displacements of these ions. We consider the
off-centre displacements as pseudospins and show that their interaction with
the soft phonon mode of the host lattice (KTaO3) plays a fundamental role in
the phase transition dynamics.

The model quantitatively reproduces the basic experimental data in the
quantum regime: the temperature dependence of the inverse dielectric function
ε−1(T ), the impurity and temperature dependence of the renormalized soft-
mode vibrational frequency ω̃(x, T ) and the impurity concentration dependence
of the transition temperature TC(x). In particular we show that the critical
concentration x∗ is determined by the ion tunnelling frequency, the parameters
for the bare soft mode and the pseudospin–phonon coupling constant.

1. Introduction

X-ray absorption fine-structure (XAFS) measurements on a number of oxygen perovskites
(see [1] and references therein) have conclusively shown that the atoms in these systems do
not occupy high-symmetry positions, even far above the temperature of the transition to the
cubic nominally undistorted phase. These crystals display both displacive-like and order–
disorder-like properties [2–5]. Recently [6–9], we have developed a phase transition model
of pure ferroelectric perovskites, which takes into account the soft transverse optical mode
(the phonon subsystem), the dynamical spontaneous off-centre displacements (the pseudospin
subsystem) and the interaction between them. We have demonstrated that the existence of
the spin subsystem and especially its interaction with the soft mode play a major role in the
ferroelectric transition in these systems.
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In this paper we address the mechanism of ferroelectric phase transition of incipient
ferroelectric crystals, doped with ions that drive them into the ferroelectric phase, such as
KTa1−xNbxO3 (KTN). Pure KTaO3 is an incipient ferroelectric, which does not undergo any
phase transition. But with temperature decreasing towards zero, it shows a strong increase in
the dielectric constant, related to the softening of its ferroelectric mode [10]. Substituting Nb
for Ta modifies the properties of KTaO3 and for x > 0.008 KTN undergoes a ferroelectric
phase transition with TC = 0 at the critical concentration x = x∗ = 0.008 [11].

The bulk of experimental investigations of KTN [11–16] were devoted to concentrations
x � x∗, in the search for peculiar quantum effects in the phase transition near zero temperature.
The theory of such a ‘quantum ferroelectric’ was developed in [17–19], showing the possibility
of ‘pure’ displacive-like transition at TC → 0 (the displacive or quantum limit). The
theory predicted non-trivial relations for the transition temperature TC(x), the variation of the
inverse dielectric constant ε−1(T ) with temperature and the zero-point dielectric susceptibility
ε−1(T = 0, x):

TC(x) = A(x − x∗)0.5

ε−1(T ) ∝ (T − TC)
2 (for TC = 0)

ε−1(T = 0, x) ∝ (x − x∗).

(1)

The first and last relations agree satisfactorily with experiment [11, 12] in the quantum
regime (x∗ � x � 0.04) with A = 276 K. As for the temperature dependence of the inverse
dielectric constant ε−1(T ), the experimental results [13] for x = 0.006 (x < x∗), x = 0.008
(x = x∗) and x = 0.012 (x > x∗) in the temperature range 4 K � (T − TC) � 200 K can be
well described by the Barrett expression [20]

ε(T ) = ε∞ + B/[T1 coth(T1/T ) − T0]

with x-dependent constants B, T1 and T0. Clearly, this expression is quite different from that
predicted by the theory.

In the above-mentioned theory the quantum effects are simply a result of the transition
from classical statistics, valid at sufficiently elevated temperatures, to quantum statistics, valid
at very low temperatures. XAFS measurements on KTaO3 [21] and on KTa1−xNbxO3 [22],
performed after the publication of the above theoretical work, have conclusively shown that
within experimental accuracy the Ta ions always occupy the centre of symmetry positions.
However, the Nb ions occupy off-centre positions even at low Nb concentrations and at
temperatures far above TC . The presence of these spontaneous off-centre ionic displacements
shows that the ions are subject to a multiwell potential and may display another quantum effect,
namely tunnelling among equivalent potential minima. This effect has not been considered in
the previous theory and is taken into account here.

Another ‘pure phonon’ theory of phase transition in KTN [23] takes the presence of Nb
into account by introducing x-dependent linear and non-linear polarizabilities of the oxygen
ions [24]. By refining these parameters this approach is able to reproduce some experimental
results. This approach is however purely phenomenological; i.e. the nature of the x-dependence
of the polarizabilities is not explained by this model.

An alternative semi-phenomenological model [25, 26] has discussed the interaction of
the dipoles at the impurity sites with the host crystal soft mode. We believe that this model
is basically correct. However, it does not explain the origin of the spontaneous off-centre
displacements and does not consider Nb tunnelling and zero-point vibrations. Yacoby and
Girshberg [27] pointed out the importance of these factors at low temperatures. Recently,
Kleemann et al [28] have suggested a number of models including one that takes into account
off-centre impurities, spin–phonon interactions, tunnelling, direct spin–spin interaction and
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zero-point vibrations and calculates expressions for the zero-frequency dielectric function.
However, the authors do not discuss which of the models actually applies to impurity-doped
incipient ferroelectrics nor do they explain the origin of the off-centre displacements.

As discussed above, the results of the XAFS measurements on dilute KTa1−xNbxO3 show
that Nb ions and only Nb ions are at off-centre positions in the cubic phase. Furthermore,
these local off-centre displacements are independent of Nb concentration, suggesting that the
displacements are the result of a strong local interaction. This fundamental fact suggests that
the origin of the Nb off-centre displacements is the same for both pure KNbO3 and KTN and
that the phase transition in KTN is also related to the pseudospin interaction with the host lattice
soft mode. Thus as in KNbO3, we consider both interband and intraband electron–phonon
interactions except that in this case the latter is site dependent.

The interband e–p coupling has been known to be strong and responsible for the existence
of the soft mode [29–31]. Furthermore, this interaction is in essence equivalent to the 2p–
3d orbital hybridization found in first-principles calculations [32]. Both KNBO3 [33, 34] and
KTN [35,36] have small polarons, thus showing that Nb induces strong intraband e–p coupling.
The value of the coupling constant has been experimentally determined.

Site-dependent intraband electron–phonon (e–p) interaction has been considered in various
mixed crystals and glasses (see review [37]), where the authors were concerned with such
phenomena as the effect of small polarons on dc and ac conductivity, optical absorption,
conductivity in strong electrical fields, the Hall mobility etc. Here we shall show that the
presence of virtual electrons in the conduction band of KTN due to the interband electron–
phonon coupling and the strong intraband electron–phonon coupling of Nb drives the Nb
ions to off-centre positions in agreement with XAFS experiments. Furthermore, as a result
of the interaction between the off-centre Nb displacements and the host lattice soft mode,
KTN undergoes a ferroelectric phase transition. However, due to the fact that the Nb atoms
tunnel among the equivalent potential minima, it is necessary to have a finite minimum Nb
concentration for TC = 0.

We shall show that using quantum statistics for both phonons and spins, this model
leads, in the molecular field approximation, to the correct concentration dependence of TC

including a correct prediction of the critical concentration x∗ and to the correct temperature
and concentration dependence of the inverse dielectric function and the soft-mode frequency.

2. System Hamiltonian, off-centre displacements and dynamical disorder

We approach the model of KTN in the following way:

(a) The electronic band structures of KTaO3 and KNbO3 are similar. We therefore assume
that the bare electronic band structure (ignoring electron–phonon interaction) of KTN for
small x � x∗ is essentially equal to that of KTaO3.

(b) The soft mode of KTaO3 extrapolates to zero at T0 � −12 K. Although KNbO3 undergoes
a ferroelectric transition at 760 K, its soft mode extrapolates to zero at T0 � 100 K. This
has been shown experimentally [38] and is in agreement with our theoretical model [9].
Thus, we can assume that the bare-phonon system of KTN is approximately equal to that
of KTaO3 with a small correction to the soft mode due to the presence of up to a few
per cent of Nb. Notice that, due to the relatively small difference between the values of T0

of KTaO3 and KNbO3, this alone cannot account for the fact that KTN undergoes a phase
transition at TC = 0 for x less than 1%.

(c) We propose that the main difference between KTN and KTaO3 is that the intraband
electron–longitudinal phonon interaction constants at Ta and Nb sites are very different.
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We know that this is the case in pure KTaO3 and pure KNbO3. Here we assume that the
interaction constants at the Ta and Nb sites are equal to their values in KTaO3 and KNbO3

respectively.

Ordinarily, impurities give rise to local or resonant modes and to changes in the phonon
spectrum of the host. Due to the fact that the host lattice soft-mode branch overlaps in part
the acoustic branches, the low-frequency impurity modes are by definition resonant modes.
Since the Nb off-centre displacements are dynamic and much larger than the vibrational
amplitudes and since the resonant mode frequencies are hardened as a result of the off-centre
displacements, we believe that the effect of the resonant modes on the phase transition is
negligible in comparison to the effect of the impurity off-centre displacements.

The Hamiltonian H of KTN is identical in structure to that of pure KNbO3 (see [9]) and
includes a two-band electron Hamiltonian He, a free-phonon-field Hamiltonian Hph and an
electron–phonon interaction Hamiltonian He−ph.

We assume that replacing a small fraction of Ta ions with Nb does not significantly
affect the bare electronic structure of the system—that is, that the electron energies εα and all
overlap integrals Jαα(m − m′) do not depend on the site index. So, the electronic part of the
Hamiltonian H remains unchanged and in a site representation is given by

He =
∑
m,α

εαa
+
αmaαm +

∑
m,m′,α

Jαα(m − m′)a+
αmaαm′ (2)

where α takes the values 1 and 2 for conduction and valence bands respectively, m labels the
site and a+

αm (aαm) is the (α, m)-site creation (annihilation) electron operator.
The bare-phonon subsystem is also assumed to be unaffected by disorder: the phonon

spectrum is described by the wave vectors and by the index of the vibrational branches. We
include in the free-phonon Hamiltonian two terms:

Hph = Hl
ph + Ht

ph =
∑

q

ωqlb
+
qlbql +

∑
q

ωqt b
+
qt bqt (3)

where s = l, t labels the longitudinal or transverse polar optical branch, respectively, ωq,s is
the frequency of the phonon with wave vector q and branch index s, b+

q,s (bqs) are the phonon
creation (annihilation) operators.

The electron–phonon interaction is described by a Fröhlich-like Hamiltonian He−ph and
includes two types of electron–phonon coupling: the strong interband interaction Ht

e−ph with
transverse phonons and a coupling constant �αβ(q) accounts for the soft mode, and the strong
intraband interaction Hl

e−ph with longitudinal phonons and coupling constant γα(q) causes the
electron localization:

He−ph = Hl
e−ph + Ht

e−ph. (4)

To take the presence of the impurities into account we consider both coupling constants
as functions of the site index m and the phonon wave vector q:

�mαβ(q) =
2∑

i=1

�i,αβ(q)η
i
m γm,α(q) =

2∑
i=1

γi,α(q)η
i
m. (5)

Here ηi
m are the random occupation numbers [39]: ηi

m = 1 if site m is occupied by an atom
of type ‘i’, otherwise ηi

m = 0; where i = 1, 2 and i = 1 corresponds to Ta, i = 2 to Nb.
Evidently,

∑
i η

i
m = 1, ηi

mηj
m = δi,j η

i
m. The configurational averages for a fully disordered

mix are

〈ηi
m〉 = xi 〈ηi

mη
j

m′ 〉 = xixj (6)

where xi is the concentration of atoms of the ith type.
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Since in the perovskites the conduction band is formed mainly by d states of metals
(Ti, Nb, Ta) and the valence band is formed mainly by oxygen 2p states, we assume that the
substitution of Nb for Ta modifies the electron–phonon interaction in the conduction band only:
the occupation numbers ηi

m are meaningful only for the conduction band; for the valence band
ηi

m ≡ 1 and the indices i, j can be omitted. In addition, we shall deal below with intraband
electron–phonon interaction in the conduction band (α = 1) only. Since the valence band is
broad, hole polarons cannot form. So,

Hl
e−ph = 1√

2N

∑
q,m,j

ωql[γ
∗
j,1(q)η

j
m exp(−iq · m)b+

ql + γj,1(q)η
j
m exp(iq · m)bql]a

+
1ma1m

(7)

Ht
e−ph = 1√

N

∑
q,m,α,β,α �=β,j

�αβ,j η
j
m

√
ωqt

2
exp(iq · m)[bqt + b+

−qt ]a
+
αmaβm. (8)

The intraband coupling constants of the Ta sites, j = 1, taken from KTaO3, are small [40,41],
namely γ1,1(q) � 0. In contrast the constants of Nb, j = 2, taken from KNbO3 are large [9,33]:

γ ≡ 1

N

∑
q

∣∣γ2,1(q)
∣∣2 � 4.5 � 1 �2,αβ > �1,αβ . (9)

As in the case of pure KNbO3 [9], the first inequality necessitates the application of the small-
polaron canonical transformation [42, 43]:

H̃ = exp(−S)H exp(S) ≡ H̃e + H̃ph + H̃ l
e−ph + H̃ t

e−ph (10)

where

S =
∑
m

S1ma+
1ma1m (11)

and

S1m = 1√
2N

∑
q,j

[(b+
−qlγ

∗
j,1(q) − bqlγj,1(q))η

j
m exp(iq · m)] (12)

yielding a set of new electron and phonon operators:

a+
1m = ã+

1m exp

[
− 1√

2N

∑
q,j

(b+
−qlγ

∗
j,1(q) − bqlγj,1(q))η

j
meiq·m

]
(13)

b+
ql = b̃+

ql − 1√
2N

∑
m,j

a+
1ma1mγj,1(q)η

j
m exp(iq · m). (14)

After some transformations we are led to three significant results:

(a) The overlap integrals for impurity and matrix ions are strongly renormalized, whereas the
overlap integrals of the host atoms remain unchanged:

J̃
1,2
11 = J̃

2,1
11 = J11 exp(−γ ) � J11 J̃

1,1
11 = J11. (15)

Here J̃ i,i ′
αα is the renormalized overlap integral.

(b) The impurity electronic energy level is strongly renormalized while that of the host level
is not:

ε̃1,1 = ε1 ε̃2,1 = ε1 − 1

2N

∑
q

ωql

∣∣γ2,1(q)
∣∣2 ≡ ε1 − Ep (16)

where ε̃i,α is the renormalized site energy and Ep is the polaron energy shift.
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(c) As shown below, the polaron canonical transformation leads to an off-centre displacement
of the impurity (Nb) ions that tunnel among the equivalent off-centre positions.

Notice that within our approximations, neglecting the e–p interactions leaves the system
completely ordered. The introduction of these interactions introduces the disorder. In addition,
the polaron transformation gives rise to two new terms: a direct residual interaction between
two polarons at different sites (m �= m′), and a residual intraband polaron–longitudinal
phonon interaction H̃ l

e−ph. In our problem of ferroelectric phase transition, the corrections

associated with these terms are small relative to the background of interband interaction H̃ t
e−ph

even for pure KNbO3 (see [9]). This is especially so in our case of small Nb concentration
(x2 � x1, x2 ≡ x), and the corrections may therefore be left out.

Let us now consider the changes in the phonon spectra in more detail. The polaron
canonical transformation does not affect the free-transverse-phonon Hamiltonian Ht

ph, but
renormalizes the interband electron–phonon interaction:

H̃ t
e−ph =

∑
m,q,α �=β,i

�αβ,iη
i
m

√
ωqt

2N
Fαβ(m)eiq·m(bqt + b−qt )ã

+
αmãβm (17)

leading to the existence of the soft mode. The operator Fαβ(m):

Fαβ(m)
∣∣
(α �=β)

= exp

{
1√
2N

∑
q,i

[b+
qlγ

∗
i,1(q)η

i
me−iq·m − bqlγi,1(q)η

i
meiq·m]

}
(18)

describes multiphonon processes associated with the local deformation of the lattice, due to the
electronic transition from state to state (α �= β) on the same site in the presence of the strong
intraband electron–phonon coupling [9]. Notice, however, that the intraband electron–phonon
coupling is strong only for Nb ions.

The renormalized phonon spectrum defined by the Hamiltonian, equation (17), is given
by the poles of the full phonon Green’s function D(q,ωn). The technique for evaluating
the diagrams, including the operator Fαβ(m), was developed in [9] for pure ferroelectrics
(for uniform coupling constants). In our case, the diagrams of the total polarization operator
*(x, T ) of the system can be obtained in just the same way. The only difference is the
impurity consideration in the diagrams, i.e. the production in the diagrams of two types of
vertex (two types of coupling constant �αβ,i). It can be shown that the corrections to *(x, T )

associated with intraband interactions are proportional to x2(Ep/Ē)2 � 1, and can therefore
be neglected.

After some transformations, we obtain the soft-mode frequency (�αβ,i ≡ �i):

ω̃2
0(x, T ) = ω2

0t [1 + *(x, T )] = ω2
0t

[
−+̃ +

3

2

(
ω0t

ω

)2(
ω

2E

)
coth

(
ω

2T

)]
(19)

+̃(x) = + + 2x

(
�2

�1
− 1

)
(20)

where E is the average interband energy difference, ω is the average of the soft-phonon-branch
frequency and + ≡ 4(�1)

2/E − 1 � 1. The phonon subsystem is (ferroelectrically) unstable
if, at T = 0,

(1 + *)q→0 < 0. (21)

If condition (21) is satisfied, the transition temperature T0 is the temperature at which ω̃2
0 tends

to zero. Since the second term of equation (19) is always positive, it is necessary for T0 � 0
that +̃0 > 0. This is the threshold inequality [29–31], which bounds the coupling constant
�αβ from below.
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Pure KTaO3 does not undergo any phase transition, i.e.

0 < +̃(0) ≡ + <
3

2

(
ω0t

ω

)2(
ω

2E

)
.

However, for x � x̃ it is possible that

+̃(x) � 3

2

(
ω0t

ω

)2(
ω

2E

)
and the system may undergo a phase transition. Here, x̃ is the critical concentration (for x = x̃,
T0 = 0).

So, the presence of Nb-related vertices in the polarization operator of KTaO3 leads to
an increase in interband polarizability that causes further softening of the renormalized soft
mode and a possible phase transition. This effect explains on the micro-level the starting
assumption of references [23], about the niobium-concentration-dependent polarizability in
KTN. Although reference [23] discusses the changes in the oxygen ion polarizability, while in
our model both bands make a contribution to interband polarizability, we deal with the same
effect (recall that the valence band is formed mainly by oxygen 2p states). In principle, for
sufficiently strong interband coupling constant this polarizability leads to a lattice instability
and to phase transition. However, as already indicated, this mechanism fails in our case. Using
the interband e–p coupling constants of Ta [41] and Nb [9], we find that x̃ = 0.2, i.e. x̃ � x∗

(the experimental critical concentration x∗ = 0.008). Thus for x∗ � x � x̃, this mechanism
can be ignored. The temperature of the phase transition, induced by spin–phonon interaction,
is always higher than the transition temperature of the associated displacive-like transition
(see below). Therefore, the ‘spin–phonon’-induced transition must be dominant at smaller
Nb concentration. So, the presence of impurities, at least for small (x � x∗) concentrations,
actually leaves the transverse optical phonon branch and, in particular, the soft mode ω̃2

0(T )

remains approximately unchanged.
The transformations in equation (13) and equation (14) leave the frequency of the

longitudinal branch ωql unchanged, and in terms of the new operators b̃ql , b̃+
ql the Hamiltonian

H̃ l
ph has the same form as Hl

ph. However, for the impurity (j = 2), the second term in
equation (14) describes an ionic displacement and the longitudinal vibrations with frequency
ωql are about the new equilibrium position. Substituting b̃+

ql from equation (14) in the usual
expression for the ionic displacement and using the homopolar approximation (

∑
α ã+

αmãαm =
1) we obtain a renormalized displacement operator of the central (Nb or Ta) ion in the mth
unit cell:

r̃m = 1√
N

∑
q,s

√
1

2M∗ωqs

[eqs exp(iq · m)bqs + eqs exp(−iq · m)b+
qs] + bm (22)

bm = 1

N

∑
q,i

√
2

M∗ωql

eql exp(iq · m)γ ∗
i,1(q)η

i
m

∑
m′

exp(−iq · m′)ã+
1m′ ã1m′ (23)

where s is the branch number, M∗ is the reduced unit-cell mass and eqs is the polarization
unit vector of the corresponding mode. The first term in equation (22) contains only phonon
operators, representing the usual vibrations about the equilibrium position, whereas the second
term bm contains only electronic operators and represents a new position, the local off-centre
displacement, which is proportional to the intraband electron–phonon coupling constant.
This result is highly non-trivial, because in spite of the fact that the electrons and phonons
involved in the e–p interaction extend throughout the crystal, the off-centre displacements
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of the host lattice ions (i = 1, γ1,1(q) � 0) are negligible, while those of Nb (i = 2 with

γ ≡ (1/N)
∑

q

∣∣γ2,1(q)
∣∣2 � 1) are large.

Due to symmetry, the average of the vector bm is zero in the cubic phase, but the average
of |bm|2 is not zero and may be rewritten as

|bm|2 = 1

N

∑
q,i

2ωqs

M∗ω2
ql

∣∣∣ej

ql

∣∣∣2 ∣∣γi,1(q)
∣∣2

ηi
m

(
Ne

N

)
(24)

where Ne/N is the electron density in the conduction band.
It is clear that due to the large band gap Eg , there are no free electrons in the conduction

band. The fact that Ne/N is not zero is entirely due to the virtual excitation of electrons by
the strong interband electron–phonon coupling H̃ t

e−ph (equation (17)). For non-ferroelectric

crystals, where 4�2
αβ/E � 1, this correction may be negligible. However, in our case, the

threshold inequality requires 4�2
1/E � 1 (equation (21)). We know that this relation is

satisfied because KTaO3 is an incipient ferroelectric. Thus Ne/N obeys the formula obtained
in reference [9] and is valid for KTaO3, KNbO3 and KTN:

Ne/N =
(

4�2
1

E

)
ω2

0t

2ωE
coth

(
ω

2T

)
� ω2

0t

2ωE
coth

(
ω

2T

)
. (25)

Substituting equation (25) in equation (24) we finally obtain

|b0/a|2 � (Ep/Eal)
ω2

0t

2ωE
coth

(
ω

2T

)
(26)

where b0 is the magnitude of the spontaneous local off-centre displacement, a is the lattice
parameter Eal ≡ M∗ω2

l a
2/2 and Ep is the polaron shift of the Nb ion defined in equation (16).

The interaction Hamiltonian, equation (7), does not determine the direction of displace-
ment bm—only its value. From symmetry considerations it is clear that the off-centre displaced
ions may occupy several equivalent positions of equilibrium in the unit cell, with tunnelling
(or, at high temperature, hopping) transitions among them. The position and the motion of
the host lattice ions can be further described as before; however, the impurity ions perform
small oscillations about each equilibrium position and occasionally jump or tunnel through the
potential barrier to a neighbouring position of equilibrium. Thus, the expansion of the energy
in terms of small displacements, commonly used for ordinary phonons, describing the motion
in the vicinity of one equilibrium position is not applicable to the impurity ions. The basic
idea of our model is to rewrite the complicated Nb non-linear oscillations in a different way,
representing its tunnelling (or hopping) in an explicit form.

The small-polaron canonical transformation, equation (13) and equation (14), does not
describe the ionic tunnelling or hopping among equivalent positions in the unit cell. We
therefore approximate the operator of the off-centre displacement bm by a spin operator∑

i biη
i
mσ z

m, where σ z
m is the Pauli matrix, b2 = b0 and b1 ≡ 0. Thus, the new displacement

operator now takes the form

Rm =
∑
i

biη
i
mσ z

m +
∑
q,s

√
1

2M∗ωqsN
eqs exp(iq · m)[bqs + b+

−qs]. (27)

It should be noted that in the case of KTN there are eight symmetry-equivalent off-centre
positions in the cubic cell ([111]-type off-centre displacements). However, the tunnel-
ling probability is significant only between nearest-neighbour pairs, justifying the spin
representation.
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3. Ising-like model with a transverse field and ferroelectric phase transition in dilute
crystals

Substituting Rm in the Hamiltonian H̃ , we obtain the new effective Hamiltonian Ĥ , in which
two types of motion of the impurity ions—the tunnelling and the vibrations near the one
equilibrium position—are separated. Including the term describing tunnelling in an explicit
form, we arrive after some transformations (for more detail see [9]) at the Ising-like spin–
phonon Hamiltonian in a transverse field:

Ĥ = −
∑
m,i

0mσx
mηi

m +
∑

m,m′,i

f (m − m′)ηi
mσ z

mQm′

+ (1/2)
∑

q

[
PqP−q + ω̃2

qt (x, T )QqtQ−qt

]
(28)

where 0m is the tunnelling frequency, Qqt and Pqt are the critical phonon branch normal
coordinate and the canonical conjugate of Qqt respectively and

f (q) =
√
M∗ω4

qt a
2

(
b0

a

)
is the Fourier transform of the spin–phonon coupling constant f .

In ordinary order–disorder phase transitions the tunnelling term in Ĥ plays a decisive
role [44]. It determines the lowest spin–phonon coupling constant that still yields a phase
transition. In our case it defines the critical (threshold) concentration x∗ at which a ferro-
electric phase transition takes place at TC = 0.

Hamiltonians of this type are well understood and commonly used to describe order–
disorder-like phase transitions (the Kobayashi model [44, 45]). In our case, however, there
are two essential differences. First, the spins interact with a soft mode and, as noted in
reference [9], it leads to a strong temperature dependence of the effective spin–spin coupling
constant. Second, we shall consider the transverse (tunnelling) field on the sites as a random
field. For given ionic mass, oscillation frequency near the equilibrium position and off-centre
displacement |bm|, the tunnelling frequency 0m in a multiwell potential can be calculated
exactly [46]. In this case, for βb2

0 > 1, β ≡ (Mω/h̄), the tunnelling frequency 0 ∝ e−βb2
0 .

Hence, a slight variation in the off-centre displacement from site to site changes strongly the
site tunnelling frequency. We shall consider the site off-centre displacement |bm| as a random
variable with a Gauss-like distribution function

ρ(b) = 1√
2πσ

exp

(
− (b − b0)

2

2σ 2

)
(29)

where σ is an experimentally determined distribution width.
Using the Hamiltonian equation (28) we have calculated in the mean-field approximation

the temperature- and frequency-dependent dielectric function ε(T , ω):

ε(T , ω) = C/[ω̃2
0t (T ) − ω2 − xF(ω, T )] (30)

where

F(ω, T ) ≡ |f (0)|2
∫

ρ(b)
0(b) tanh[0(b)/T ]

02(b) − ω2 − ig0
db (31)

and g is the damping factor of the host lattice soft mode. ε(T , ω) has peaks at ω = ω̂(x, T )

where the real part of the denominator in equation (30) vanishes:

ω̃2
0t (x, T ) − ω̂2 = x |f (0)|2

∫
ρ(b)

0(b)(02(b) − ω̂2
qt (x, T )) tanh[0(b)/T ]

(02(b) − ω̂2
qt (x, T ))2 + g202

db. (32)
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If σ is small there is a range of temperatures for which this equation has three solutions. In
the limit of σ → 0 the lowest- and highest-frequency solutions correspond to the two split
branches while the intermediate-frequency solution yields ε = 0. On the other hand, if σ is
large enough, equation (32) has a single solution giving rise to a single peak in the dielectric
function. Notice that even if g → 0 the imaginary part of F(ω, T ) does not vanish. This
represents the broadening introduced by the interaction of the soft mode with the distribution
of tunnelling frequencies.

The transition temperature TC is the solution of the equation ω̂0t (x, TC) = 0, or

ω̃2
0t (x, TC) = x |f (0)|2

∫
ρ(b)

tanh[0(b)/TC]

0(b)
db. (33)

This equation determines the function TC(x). Finally, the equation TC(x
∗) = 0 yields the

critical concentration x = x∗:

ω̃2
0t (x

∗, 0) = x∗ |f (0)|2
∫

ρ(b)
db

0(b)
. (34)

Equations (32)–(34) provide the three most important parameters related to the ferroelectric
phase transition of KTN.

4. Comparison with experiment

The basic assumption of our model is that the intraband e–p coupling constant is very non-
uniform: it is large at the Nb ions and very small at the Ta ions. This leads to the creation
of ground-state polarons and their localization on the Nb ions. This process, by itself, is not
related to the phase transition and can be investigated independently. Experimentally, the
most obvious manifestations of the small-polaron production in such (disordered) materials
are the characteristic intraband light absorption by free carriers and the variation of the carrier
mobility with increasing concentration of localization sites or, in our case, with increasing Nb
concentration.

The theory of optical intraband absorption in disordered systems with strong electron–
phonon interaction [43] predicts, just as in the case of pure (ordered) crystals [47], a Gaussian-
shaped peak, with a temperature-independent peak energy, proportional to the polaron shift.
The peak intensity depends strongly on temperature and on the concentration of ions with
strong electron–phonon interaction. The peak width increases with increasing temperature.

This peak has indeed been observed in single reduced semiconducting KTN crystals (for
x = 0.35 [35] and x = 0.13 [36]), and was not observed in reduced KTaO3 crystals [48]. Its
energy (�0.6 eV) is indeed independent of Nb concentration and coincides with the position of
a similar peak in semiconducting KNbO3. Its energy is equal to 2Ep, where Ep is the polaron
shift found in KNbO3 [33].

The carrier mobility µ in KTaO3 [48] and in KTN was investigated for 0 � x � 1 [33,40].
Pure KTaO3 manifests normal electronic mobility (30 cm2 V−1 s−1 at room temperature),
which sharply decreases to 8 cm2 V−1 s−1 for x = 0.1 and to ‘pure’ polaronic mobility in
KNbO3 (0.5 cm2 V−1 s−1). Neither fact can be explained by standard (non-polaron) theory of
conductivity and optical absorption.

Let us now consider the experimental results related to ferroelectricity in KTN. As noted
above, the tunnelling frequency 0 is determined by the mass of the tunnelling ion M , the small
vibration frequency near the equilibrium position ω and the ion off-centre displacement b.
Assuming that the parameters M and ω for KTN are the same as for KNbO3 [49], we find that
the tunnelling frequency 0(b) = A exp(−b2/B), were A = 0.066 eV and B = 6.5×10−3 Å2.
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Next, the soft-mode frequency of KTaO3, ω̃2
0t (T ) (equation (19)), can be expressed in a

more convenient form:

ω̃2
0t (T ) = A0

[
ω

2
coth

(
ω

2T

)
− T0

]
.

Its parameters have been obtained from references [40,41]: A0 = 0.0052 eV, ω = 0.0046 eV,
T0 = 0.0011 eV. The spin–phonon coupling constant f (0) is practically the same as for
KNbO3 [9].

Even in the absence of the off-centre displacement variance, i.e. for ρ(b) ∼ δ(b − b0),
equations (30), (33), (34) provide a good description of the experimental results. In this case,
using b = b0 = 0.15 Å found in XAFS measurements [22], we have calculated the tunnelling
frequency and found 0(b0) ≡ 00 = 15–17 K. The corresponding critical concentration
obtained from equation (34) is x∗

th = 0.0068 which is in good agreement with the experimental
value x∗ = 0.008 [11]. The concentration dependence of TC(x) obtained from equation (33)
and the corresponding experimental values [11,12] are shown in figure 1. Notice that in spite
of the fact that the functional form obtained from equation (33) is quite different from the
square-root dependence, theory and experiment agree very well. Finally, the inverse dielectric
susceptibility as a function of temperature for a number of concentrations (x = 0.006, 0.008 and
0.012) has been calculated using equation (30). The theoretical values and the corresponding
experimental results [13] are shown in figure 2. As can be seen, all theoretical curves are in
good agreement with experiment.
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Figure 1. The Nb concentration dependence of the ferroelectric transition temperature. Dots:
experimental results; solid line: theory.

The temperature dependence of the renormalized soft-mode frequency is given by
equation (32). In the limit that σ → 0, namely when ρ(b) ∼ δ(b − b0), this equation reduces
to the well studied equation of the Kobayashi model [44, 45], describing two renormalized
spin–phonon branches, separated by a gap. The splitting is largest at the crossing point of
the 00 and ω̃2

0t (T ) curves. The gap between the branches is proportional to the spin–phonon
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Figure 2. Temperature dependences of the inverse
dielectric constant. Dots: experimental results; solid
lines: theory.

coupling. However, Raman experiments [16] show that the soft-mode Raman line does not
split and its frequency continuously decreases as the transition temperature is approached. We
therefore conclude that the off-centre displacements have a slight spread causing a spread in
the tunnelling frequencies.

We found that for σ 2 � 0.0017 Å2 equation (32) has only one solution; that is, the
splitting disappears. This value is much smaller than the average displacement b0 and is
consistent with the static disorder value found in XAFS measurements. Hence, we have found
all of the parameters of our model and can now more precisely compare our results with the
experimental data. The curves in figure 1 and figure 2 remain practically as before. The
renormalized value of the soft-mode frequency (equation (32)) for x = x∗ and the Raman
measured peak frequencies (dots) [16] are shown in figure 3 and are in very good agreement
with each other. The imaginary part of the dielectric function contributes to the broadening
of the Raman lines. The theoretical Raman lines ignoring other broadening contributions are
shown in the inset of figure 3.

In this work we identified the transition temperature TC as the temperature at which
the renormalized soft-mode frequency ω̃2

0t (T ) tends to zero. We have recently calculated
the spin–spin correlation function for small (T − TC) beyond the mean-field approximation.
These calculations are not presented here and will be published separately. The main result
is that a central peak develops and becomes critical as T approaches TC , while the soft-mode
frequency saturates at a value of a few cm−1. This central peak is different from the one for
pure KNbO3. The central peak for pure KNbO3 [6] is due to a relaxor associated with the
correlated hopping of the Nb ions, while the central peak for KTa1−xNbxO3 for small Nb
concentrations is associated with the correlated tunnelling of the Nb ions. These results are
in good agreement with the experimental results [14,15] on the central peak of KTa1−xNbxO3

(for x = 0.009, 0.1, 0.28).
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Figure 3. The temperature dependence of the renormalized soft-mode frequency. The split
branches and the theoretical results are obtained with and without spread in the Nb off-centre
displacements, respectively. Inset: theoretical Raman line shapes.

In conclusion, the theory presented here accounts quantitatively for the off-centre dis-
placements of the Nb ions in the paraelectric phase, the Nb concentration dependence of the
transition temperature, the critical Nb concentration for TC = 0, The temperature and Nb
concentration dependence of the dielectric constant and the Nb concentration and temperature
dependence of the renormalized soft-mode frequency. Notice that in these calculations we used
only parameters that were previously determined for pure KTaO3 and KNbO3. No additional
adjustable parameters were used.
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